

Müller-BBM GmbH Niederlassung Nürnberg Fürther Straße 35 90513 Zirndorf

Telefon +49(911)600445 0 Telefax +49(911)600445 11

Dipl.-Ing. (FH) Frank Stöcklein Telefon +49(911)600445 40 Frank.Stoecklein@MuellerBBM.de

03. Mai 2012 M97889/N09 STO/STO

Verteiler

- Loacker Recycling GmbH Lustenauerstr. 33 6840 Götzis Österreich
- Landratsamt Haßberge Postfach 14 01 97431 Haßfurt
- Bayerisches Landesamt für Umwelt Abt. 2
 86177 Augsburg

Immissionsmessungen im Umfeld des Standortes Wonfurt Ergebnisse der Messungen Januar bis März (fast vollständig) 2012

Notiz Nr. M97889/N09

Sehr geehrte Damen und Herren,

nachfolgend erhalten Sie eine Zusammenfassung über die bisher vorliegenden Messergebnisse für die Messstellen MP 1 (Brache an der Ostseite des Loacker-Werksgeländes), MP 2 (Messtelle zwischen Tempel Handels GmbH und Sägewerk Reitz, westlich vom Werksgelände) und MP 3 (auf dem Grundstück der Fa. IDM, südwestlich vom Werksgelände) für den Messzeitraum vom 11.01. bis 31.03.2012¹.

Gegenüber der letzten Ergebnismitteilung wurden die Tabellen um die Ergebnisse aus dem März ergänzt. Lediglich die Schwermetallkonzentrationen im PM_{10} liegen für den März 2012 noch nicht vor.

Es ist nach wie vor festzustellen, dass eine fundierte Bewertung der Messergebnisse erst auf Basis einer ausreichend großen Datenmenge (Messzeitraum mindestens sechs Monate, unter der Voraussetzung repräsentativer meteorologischer Randbedingungen in diesem Zeitraum) erfolgen kann.

Die Schwebstaub PM₁₀-Konzentrationen lagen an allen Messpunkten auf einem für die Jahreszeit typischen Niveau. Verlauf und Höhe spiegeln die Belastungssituation wider, wie sie in Unterfranken während des Messzeitraumes anzutreffen war.

Müller-BBM GmbH Niederlassung Nürnberg HRB München 86143 USt-IdNr. DE812167190

¹ Darstellung der Messstellen, siehe Abbildung 2

Tabelle 1 Statistische Kenngrößen der PM₁₀-Konzentrationen für die Messpunkte MP 1 bis MP 3 und der LÜB-Stationen Schweinfurt (städtisch), Bamberg (städtisch) und Würzburg-Kopfklinik (vorstädtisch) für den Zeitraum 11.01.2012 bis 31.03.2012.

Kenngröße	Einheit	MP 1	MP 2	MP 3	SW 4)	BA 4)	WÜ_K	TA Luft
			5				4)	
		PM_{10}	PM_{10}	PM_{10}	PM ₁₀	PM_{10}	PM_{10}	
Minimum	µg/m³	8	12	11	8	8	7	-
Maximum	μg/m³	60	59	58	57	65	54	-
Mittelwert	μg/m³	28	28	30	26	28	26	40 ¹⁾
Mittelwert norm. 3)	μg/m³	29	30	30	29	31	28	
Tage > $50 \mu g/m^3$	1	5	4	6	4	8	2	35 ²⁾
Anzahl Messwerte	1	71	81	73	81	81	79	-
Verfügbarkeit	%	88	100	90	100	100	98	-

¹⁾ Jahresmittelw ert

⁴⁾ PM10-Messwerte der LÜB-Messstationen Schweinfurt, Bamberg und Würzburg (Kopfklinik)

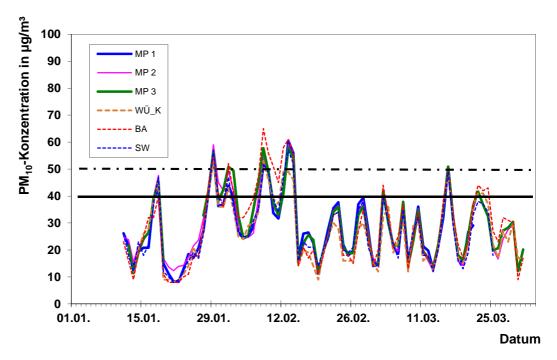


Abbildung 1 Verlauf der PM₁₀-Konzentrationen an den Messpunkten MP 1 bis MP 3 und den LÜB-Stationen Schweinfurt und Bamberg (Tagesmittelwerte) für den Zeitraum 11.01.2012 bis 31.03.2012.

²⁾ Zulässige Überschreitungshäufigkeit im Jahr

³⁾ Mittelw ert bei dem nur Messtage berücksichtigt sind, an denen für alle Messstationen Messw erte vorliegen

Tabelle 2 Metalle als Bestandteil von Schwebstaub PM_{10} am Messpunkt MP 1 für den Zeitraum vom 11.01.2012 bis 29.02.2012

Metall		Jan 12	Feb 12	Mrz 12	Apr 12	Mai 12	Jun 12	Mittel	Beurteil	ungswert
		ng/m³	Quelle							
Arsen	As	1,0	1,3	n.a.	n.a.	n.a.	n.a.	1,2	6	1)
Cadmium	Cd	0,54	0,41	n.a.	n.a.	n.a.	n.a.	0,48	5	1)
Kobalt	Co	0,10	0,44	n.a.	n.a.	n.a.	n.a.	0,27	100	4)
Chrom	Cr	1,2	2,2	n.a.	n.a.	n.a.	n.a.	1,7	17	5)
Kupfer	Cu	16	15	n.a.	n.a.	n.a.	n.a.	15	1.000	3)
Mangan	Mn	9,9	7,8	n.a.	n.a.	n.a.	n.a.	8,8	150	6)
Nickel	Ni	2,4	2,9	n.a.	n.a.	n.a.	n.a.	2,7	20	1)
Blei	Pb	15	17	n.a.	n.a.	n.a.	n.a.	16	500	2)
Antimon	Sb	1,1	0,84	n.a.	n.a.	n.a.	n.a.	0,99	80	4)
Zinn	Sn	4,3	3,5	n.a.	n.a.	n.a.	n.a.	3,9	1.000	3)
Thallium	TI	0,03	0,05	n.a.	n.a.	n.a.	n.a.	0,04	1.000	3)
Vanadium	V	0,22	0,92	n.a.	n.a.	n.a.	n.a.	0,57	20	7)
Aluminium	ΑI	50	94	n.a.	n.a.	n.a.	n.a.	72	30.000	3)
Eisen	Fe	167	220	n.a.	n.a.	n.a.	n.a.	194	30.000	3)
Molybdän	Мо	22	16	n.a.	n.a.	n.a.	n.a.	19	50.000	3)

Fußnoten siehe Tabellenunterschrift der beiden nachfolgenden Tabellen

Tabelle 3 Metalle als Bestandteil von Schwebstaub PM_{10} am Messpunkt MP 2 für den Zeitraum vom 11.01.2012 bis 29.02.2012

Metall		Jan 12	Feb 12	Mrz 12	Apr 12	Mai 12	Jun 12	Mittel	Beurteil	ungswert
		ng/m³	Quelle							
Arsen	As	0,56	1,7	n.a.	n.a.	n.a.	n.a.	1,1	6	1)
Cadmium	Cd	0,43	0,38	n.a.	n.a.	n.a.	n.a.	0,40	5	1)
Kobalt	Co	0,06	0,10	n.a.	n.a.	n.a.	n.a.	0,08	100	4)
Chrom	Cr	1,0	1,5	n.a.	n.a.	n.a.	n.a.	1,2	17	5)
Kupfer	Cu	9,2	7,4	n.a.	n.a.	n.a.	n.a.	8,3	1.000	3)
Mangan	Mn	8,4	4,7	n.a.	n.a.	n.a.	n.a.	6,6	150	6)
Nickel	Ni	3,8	2,6	n.a.	n.a.	n.a.	n.a.	3,2	20	1)
Blei	Pb	12	15	n.a.	n.a.	n.a.	n.a.	14	500	2)
Antimon	Sb	0,82	0,98	n.a.	n.a.	n.a.	n.a.	0,90	80	4)
Zinn	Sn	2,8	2,3	n.a.	n.a.	n.a.	n.a.	2,5	1.000	3)
Thallium	П	0,03	0,05	n.a.	n.a.	n.a.	n.a.	0,04	1.000	3)
Vanadium	V	0,23	0,87	n.a.	n.a.	n.a.	n.a.	0,5	20	7)
Aluminium	ΑI	38	109	n.a.	n.a.	n.a.	n.a.	74	30.000	3)
Eisen	Fe	197	201	n.a.	n.a.	n.a.	n.a.	199	30.000	3)
Molybdän	Мо	12	15	n.a.	n.a.	n.a.	n.a.	13	50.000	3)

¹⁾ Zielw ert gemäß RL 2004/107/EG bzw . 39. BlmSchV

 $^{^{2)}}$ Immissionsw ert gemäß Nr. 4.2.1 TA Luft

^{3) 1/100} MAK (TRGS 900)

⁴⁾ Eikmann et al. 1999

⁵⁾ Orientierungswert gemäß LAI, 2004

⁶⁾ WHO - Air Quality Guidelines, 2001

⁷⁾ Zielw ert gemäß LAI, 1997

Tabelle 4 Metalle als Bestandteil von Schwebstaub PM10 am Messpunkt MP 3 für den Zeitraum vom 11.01.2012 bis 29.02.2012

Metall		Jan 12	Feb 12	Mrz 12	Apr 12	Mai 12	Jun 12	Mittel	Beurteil	ungswert
		ng/m³	Quelle							
Arsen	As	0,76	1,7	n.a.	n.a.	n.a.	n.a.	1,2	6	1)
Cadmium	Cd	0,98	0,59	n.a.	n.a.	n.a.	n.a.	0,79	5	1)
Kobalt	Co	0,25	0,21	n.a.	n.a.	n.a.	n.a.	0,23	100	4)
Chrom	Cr	1,7	1,2	n.a.	n.a.	n.a.	n.a.	1,5	17	5)
Kupfer	Cu	26	21	n.a.	n.a.	n.a.	n.a.	24	1.000	3)
Mangan	Mn	17	11	n.a.	n.a.	n.a.	n.a.	14	150	6)
Nickel	Ni	5,3	3,4	n.a.	n.a.	n.a.	n.a.	4,3	20	1)
Blei	Pb	23	20	n.a.	n.a.	n.a.	n.a.	21	500	2)
Antimon	Sb	1,3	1,2	n.a.	n.a.	n.a.	n.a.	1,3	80	4)
Zinn	Sn	5,8	3,9	n.a.	n.a.	n.a.	n.a.	4,9	1.000	3)
Thallium	П	0,04	0,05	n.a.	n.a.	n.a.	n.a.	0,05	1.000	3)
Vanadium	V	0,31	0,93	n.a.	n.a.	n.a.	n.a.	0,62	20	7)
Aluminium	ΑI	73	221	n.a.	n.a.	n.a.	n.a.	147	30.000	3)
Eisen	Fe	341	316	n.a.	n.a.	n.a.	n.a.	329	30.000	3)
Molybdän	Мо	13	18	n.a.	n.a.	n.a.	n.a.	15	50.000	3)

¹⁾ Zielw ert gemäß RL 2004/107/EG bzw . 39. BlmSchV

Tabelle 5 Benzo(a)pyren (B(a)P) als Bestandteil von Schwebstaub PM_{10} an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Benzo(a)pyren	MP 1	MP 2	MP 3	39. BlmSchV
(im Schwebstaub PM ₁₀)	ng/m³	ng/m³	ng/m³	ng/m³
Jan 2012	0,8	0,7	1,0	
Feb 2012	1,1	1,0	1,0	
Mrz 2012	0,3	0,2	0,2	
Apr 2012	n.a.	n.a.	n.a.	
Mai 2012	n.a.	n.a.	n.a.	
Jun 2012	n.a.	n.a.	n.a.	
Mittelwert	0,7	0,7	0,8	1

 $^{^{2)}}$ Immissionsw ert gemäß Nr. 4.2.1 TA Luft

^{3) 1/100} MAK (TRGS 900)

⁴⁾ Eikmann et al. 1999

⁵⁾ Orientierungsw ert gemäß LAI, 2004

⁶⁾ WHO - Air Quality Guidelines, 2001

⁷⁾ Zielw ert gemäß LAI, 1997

\\S-NUE-FS01\\PRJPERSON\STO\97\97889\\M97889_N09_N04_1D.DOC: 04. 05. 2012

Tabelle 6 PCDD/F-, PCB-, PBDE-Konzentrationen an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Analysenpara	ameter	•							
	PCDD				PCB		∑ PCDD	/F PCB	PBDE
	I-TEQ exkl. BG ^a	I-TEQ inkl. BG ^b	WHO-TEQ exkl. BG	WHO-TEQ inkl. BG ^b	WHO-TEQ exkl. BG ^a	WHO-TEQ inkl. BG ^b	WHO-TEQ exkl. BG ^a	WHO-TEQ inkl. BG ^b	Σ PBDE
MP 1	fg TEQ/m³						ng/m³		
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	48 32 10	48 32 13	53 34 10	53 35 13	12 7 1	12 8 4	64 41 11	65 42 18	0,7 0,3 0,1
Mittelwert	30	31	32	34	7	8	39	42	0,4
MP2				fg ⁻	ΓEQ/m³				ng/m³
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	45 35 11	45 36 13	49 38 12	49 38 14	8 4 0,5	9 5 4	57 43 13	57 43 17	0,6 0,04 < 0,01
Mittelwert	30	31	33	34	4	6	37	39	0,2
MP3				fg ⁻	ΓEQ/m³				ng/m³
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	48 31 13	49 32 14	53 33 14	53 34 15	12 6 6	12 7 7	65 39 20	66 41 22	1,5 0,5 0,3
Mittelwert	31	31	33	34	8	9	41	43	0,7
Beurteilungs werte							150 ¹⁾	150 ¹⁾	

¹⁾ LAI 2004: Zielwert für die langfristige Luftreinhalteplanung

^a TEQ-Wert berechnet unter Einbezug nur der quantifizierten Kongenere

^b TEQ-Wert berechnet unter Einbezug der vollen Bestimmungsgrenzen für nicht quantifizierte Kongenere, w obei die Nachw eisgrenzen in der Regel jew eils um den Faktor 3 niedriger sind als die Bestimmungsgrenzen

||S-NUE-FS01\PRJPERSON\STO\97\97889\M97889_N09_N0t_1D.DOC: 04. 05. 2012

Tabelle 7 Quecksilber (gasförmig) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 17.04.2012

Monat	Zeitraum			MP 1	MP 2	MP 3	LAI 2004
				ng/m³	ng/m³	ng/m³	ng/m³
Mittel	11.01.12	-	17.04.12	3,8	1,5	3,9	50
Jan I	11.01.12	-	26.01.12	9,5	1,3	4,2	
Jan II	26.01.12	-	02.02.12		4,3	9,7	
Feb I	02.02.12	-	16.02.12	2,8	1,8	7,6	
Feb II	16.02.12	-	01.03.12	6,7	0,47	1,4	
Mär I	01.03.12	-	16.03.12	1,7	0,71	1,5	
Mär II	16.03.12	-	02.04.12	1,2	1,1	1,3	
Apr I	04.04.12	-	17.04.12	1,1	0,70	1,6	
Apr II		-					
Mai I		-					
Mai II		-					
Jun I		-					
Jun II		-					

Tabelle 8 Staubniederschlag StN an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012.

Monat	Zeitraum	MP 1	MP 2	MP 3	TA Luft
		g/(m²•d)	g/(m²•d)	g/(m²∙d)	g/(m²∙d)
Mittel	11.01.2012 - 02.04.2012	0,019	0,033	0,038	0,35
Jan 2012	11.01.2012 - 02.02.2012	0,011	0,045	0,040	
Feb 2012	02.02.2012 - 01.03.2012	0,020	0,024	0,034	
Mrz 2012	01.03.2012 - 02.04.2012	0,027	0,031	0,041	

n.a. - nicht ausw ertbar bzw. keine Probenahme

Tabelle 9 Metalle als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Metall		MP 1	MP 2	MP 3	TA Luft	VDI 2267 BI.	15 - Tab. 2 ²⁾
		$\mu g/(m^2d)$	$\mu g/(m^2d)$	$\mu g/(m^2d)$		ländlich	städtisch
Arsen	As	0,19	0,18	0,39	4 ¹⁾	0,1 bis 1,4	0,7 bis 2,2
Cadmium	Cd	1,5	0,58	2,4	2 1)	0,2 bis 0,6	0,3 bis 1,0
Kobalt	Co	1,4	0,8	2,1	-	0,1 bis 0,5	1
Chrom	Cr	3,1	1,9	9,4	-	1 bis 5	5 bis 10
Kupfer	Cu	176	30	309	-	5 bis 10	10 bis 50
Mangan	Mn	54	95	145	-	10 bis 30	50 bis 300
Nickel	Ni	6,5	6,1	14	15 ¹⁾	1 bis 3	5 bis 20
Blei	Pb	36	10	89	100 ¹⁾	10 bis 20	20 bis 35
Antimon	Sb	1,3	0,44	4,2	-	0,07 bis 2,3	2,1 bis 28
Zinn	Sn	7,3	2,3	20	-	3)	3)
Thallium	П	0,01	0,00	0,01	2 1)	0,03 bis 0,06	0,07 bis 0,3
Vanadium	V	0,48	0,69	1,7	-	2 bis 10	10 bis 70
Zink	Zn	123	45	240	-	10 bis 60	100 bis 1000
Eisen	Fe	641	407	1626	-	3)	3)
Aluminium	ΑI	279	317	824	-	3)	3)
Molybdän	Мо	0,76	0,31	1,4	-	3)	3)

¹⁾ Jahresmittelwert (der Vergleich mit Messwerten aus einem Messzeitraum unter

Tabelle 10 Arsen als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Arsen	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	0,19	0,18	0,39	4
Jan 2012	0,19	0,22	0,46	
Feb 2012	0,24	0,18	0,35	
Mrz 2012	0,14	0,14	0,37	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 11 Cadmium als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Cadmium	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	1,5	0,58	2,4	2
Jan 2012	2,2	0,92	3,6	
Feb 2012	1,6	0,59	2,5	
Mrz 2012	0,60	0,23	1,1	

n.a. - nicht ausw ertbar bzw . keine Probenahme

⁶ Monaten ist wegen meteorologisch bedingter Jahresgänge nicht aussagekräftig)

²⁾ Typische Niederschlagsbereiche gemäß VDI 2267 Blatt 15 - Tab. 2

³⁾ keine Angabe in VDI 2267 Blatt 15

Tabelle 12 Kobalt als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Kobalt	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	1,4	0,76	2,1	
Jan 2012	0,88	1,5	2,8	
Feb 2012	2,5	0,44	1,9	
Mrz 2012	0,87	0,37	1,6	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 13 Chrom als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Chrom	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	3,1	1,9	9,4	
Jan 2012	2,1	2,2	10	
Feb 2012	4,4	1,2	10	
Mrz 2012	2,8	2,2	7,3	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 14 Kupfer als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Kupfer	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	176	30	309	
Jan 2012	197	57	310	
Feb 2012	245	14	234	
Mrz 2012	86	20	383	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 15 Mangan als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Mangan	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	54	95	145	
Jan 2012	88	104	182	
Feb 2012	36	96	139	
Mrz 2012	36	84	114	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 16 Eisen als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Eisen	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	641	407	1626	
Jan 2012	606	483	2131	
Feb 2012	647	246	1408	
Mrz 2012	669	491	1340	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 17 Nickel als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Nickel	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	6,5	6,1	14	15
Jan 2012	6,4	4,3	17	_
Feb 2012	8,6	12	16	
Mrz 2012	4,4	2,0	10	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 18 Blei als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Blei	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	36	9,9	89	100
Jan 2012	43	20	128	
Feb 2012	40	3,8	71	
Mrz 2012	23	6,0	68	

n.a. - nicht ausw ertbar bzw. keine Probenahme

Tabelle 19 Antimon als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Antimon	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	1,3	0,44	4,2	
Jan 2012	1,2	0,90	5,5	
Feb 2012	1,9	0,09	3,1	
Mrz 2012	0,82	0,32	4,0	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 20 Aluminium als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Aluminium	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	μg/(m²∙d)	µg/(m²∙d)	μg/(m²∙d)
Mittel	279	317	824	
Jan 2012	204	310	1045	
Feb 2012	195	179	567	
Mrz 2012	438	461	860	

n.a. - nicht ausw ertbar bzw. keine Probenahme

Tabelle 21 Zinn als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Zinn	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	7,3	2,3	20	
Jan 2012	7,7	4,9	21	
Feb 2012	9,2	0,76	20	
Mrz 2012	5,1	1,1	20	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 22 Thallium als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Thallium	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	0,01	0,005	0,01	2
Jan 2012	0,01	0,01	0,01	
Feb 2012	0,01	0,004	0,01	
Mrz 2012	0,002	0,001	0,01	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 23 Zink als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Zink	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	123	45	240	
Jan 2012	161	84	322	
Feb 2012	129	26	252	
Mrz 2012	80	27	146	

n.a. - nicht ausw ertbar bzw. keine Probenahme

Tabelle 24 Vanadium als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Vanadium	MP 1	MP 2	MP 3	TA Luft
	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)	µg/(m²∙d)
Mittel	0,48	0,69	1,7	
Jan 2012	0,35	0,75	2,5	
Feb 2012	0,40	0,46	1,2	
Mrz 2012	0,69	0,87	1,4	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 25 Molybdän als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Molybdän	MP 1	MP 2	MP 3	TA Luft
	$\mu g/(m^{2\bullet}d)$	µg/(m²∙d)	µg/(m²•d)	μg/(m²•d)
Mittel	0,76	0,31	1,4	
Jan 2012	0,82	0,52	2,1	
Feb 2012	1,1	0,18	1,2	
Mrz 2012	0,34	0,22	0,77	

n.a. - nicht ausw ertbar bzw . keine Probenahme

Tabelle 26 PCDD/F, PCB, PBDE, Benzo-a-pyren als Bestandteil des Staubniederschlags an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.12 bis 31.03.12

Analysenparameter										
Monat	PCDD		PCB			∑ PCDD/F PCB		PBDE	PAK	
	I-TEQ exkl. BG ^a	I-TEQ inkl. BG ^b	WHO-TEQ exkl. BG ^a	WHO-TEQ inkl. BG ^b	WHO-TEQ exkl. BG ^a	WHO-TEQ inkl. BG ^b	WHO-TEQ exkl. BG ^a	WHO-TEQ inkl. BG ^b	Σ PBDE	Benzo-a-pyren
MP1	pg TEQ/(m²×d)							μg/(m²×d)	μg/(m²×d)	
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	2 2 0	5 4 3	2 2 0	5 4 3	1 1	4 4 4	5 3 1	9 8 7	1,0 1,1 0,3	nd 0,03 nd
Mittelwert	1	4	1	4	2	4	3	8	0,8	0,03
MP2				pg TE	EQ/(m²	<d)< td=""><td>•</td><td></td><td>µg/(m²×d)</td><td>μg/(m²×d)</td></d)<>	•		µg/(m²×d)	μg/(m²×d)
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	1 1 nb	4 3 3	1 1 nb	5 4 3	1 nb nb	3 3 3	2 1 nb	8 7 7	0,7 0,1 0,1	nd nd nd
Mittelwert	1	3	1	4	1	3	1	7	0,3	nd
МР3	pg TEQ/(m²×d)							μg/(m²×d)	μg/(m²×d)	
Jan 2012 Feb 2012 Mrz 2012 Apr 2012 Mai 2012 Jun 2012	3 2 1	5 4 3	3 2 1	6 4 4	15 5 8	15 6 8	18 8 9	21 10 12	3,9 1,2 1,1	0,09 0,05 0,03
Mittelwert	2	4	2	5	9	10	11	14	2,1	0,06
Beurteilungs- werte		-					9 ¹⁾ 4 ²⁾	9 ¹⁾		

¹⁾ LAI 2010: Orientierungswert für die Sonderfallprüfung nach Nr. 4.8 der TA Luft

²⁾ LAI 2004: Zielwert für die langfristige Luftreinhalteplanung

^a TEQ-Wert berechnet unter Einbezug nur der quantifizierten Kongenere

^b TEQ-Wert berechnet unter Einbezug der vollen Bestimmungsgrenzen für nicht quantifizierte Kongenere, w obei die Nachw eisgrenzen in der Regel jew eils um den Faktor 3 niedriger sind als die Bestimmungsgrenzen

nd = Analysenw ert unterhalb der Bestimmungsgrenze (nicht detektiert)

Tabelle 27 Quecksilber als Bestandteil des Staubniederschlags (StN) an den Messpunkten MP 1 bis MP 3 für den Zeitraum vom 11.01.2012 bis 31.03.2012

Monat	Messpunkt MP 1			Messpunkt MP 2			Messpunkt MP 3			TA Luft
	Proben- volumen	Hg ¹⁾	Hg	Proben- volumen	Hg ¹⁾	Hg	Proben- volumen	Hg ¹⁾	Hg	Hg
	ml	μg/l	µg/(m²∙d)	ml	μg/l	μg/(m²•d)	ml	μg/l	μg/(m²•d)	μg/(m²•d)
Mittel	230	0,06	0,04	152	0,05	0,02	228	0,09	0,06	1
Jan 12	425	< 0,05	< 0,08	170	< 0,05	< 0,03	440	< 0,05	< 0,08	
Feb 12	165	0,07	0,03	185	< 0,05	< 0,03	144	0,16	0,07	
Mrz 12	100	< 0,05	< 0,01	100	< 0,05	< 0,01	100	0,07	0,02	
Apr 12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
Mai 12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
Jun 12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	

¹⁾ Analytische Bestimmungsgrenze Hg: 0,05 μg/l

n.a. nicht ausw ertbar bzw. keine Probenahme

Die Streuung der Hg-Depositionswerte zwischen den einzelnen Messpunkten und Monaten Monaten ergibt sich dabei durch die Bestimmungsgrenze des Verfahrens, die von dem während der jeweiligen Probenahmedauer gesammelten flüssigen Probevolumen abhängig ist. Bei niederschlagsreichen Monaten ergibt sich somit eine höhere Bestimmungsgrenze als bei Monaten mit eher wenig Niederschlag

Die folgende Abbildung zeigt die Lage der Messpunkte.

Abbildung 2 Lage der Messstellen MP1 bis MP3 im Umfeld der Anlage

Meteorologische Randbedingungen für die Messungen im Januar 2012 (11.01.2012 bis 02.02.2012)

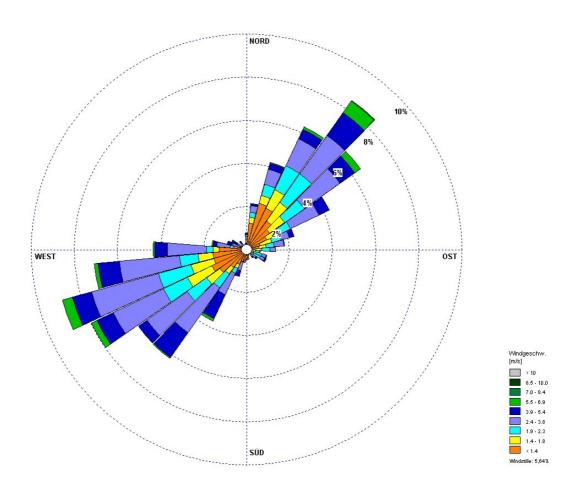


Abbildung 3 Windrichtungshäufigkeitsverteilung (gemessen am MP1) für den Zeitraum 11.01.2012 bis 02.02.2012.

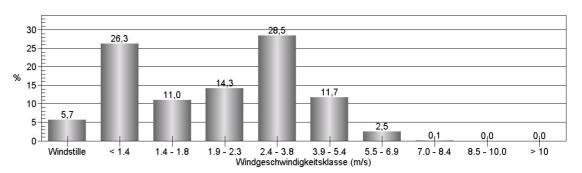


Abbildung 4 Häufigkeitsverteilung der Windgeschwindigkeiten (gemessen am MP1) für den Zeitraum 11.01.2012 bis 02.02.2012.

Meteorologische Randbedingungen für die Messungen im Februar 2012 (02.02.2012 bis 01.03.2012)

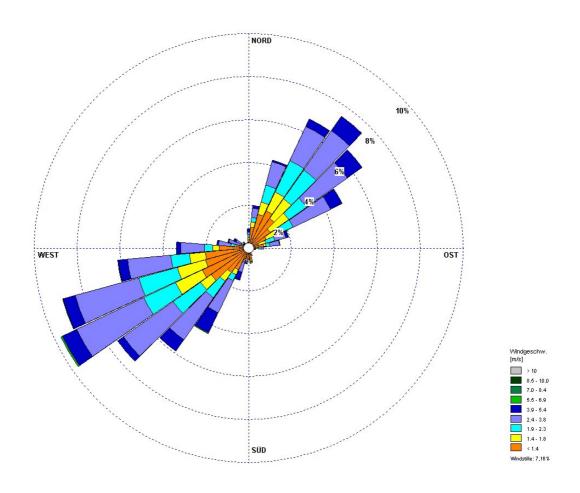


Abbildung 5 Windrichtungshäufigkeitsverteilung (gemessen am MP1) für den Zeitraum 02.02.2012 bis 01.03.2012.

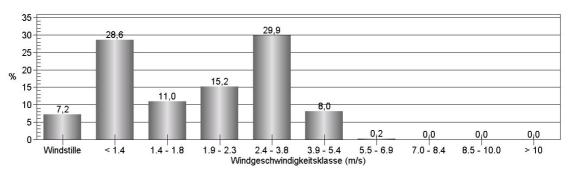


Abbildung 6 Häufigkeitsverteilung der Windgeschwindigkeiten (gemessen am MP1) für den Zeitraum 02.02.2012 bis 01.03.2012.

Meteorologische Randbedingungen für die Messungen im März 2012 (01.03.2012 bis 31.03.2012)

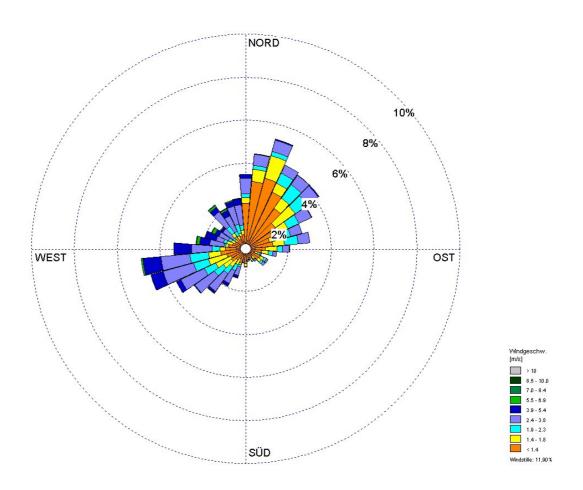


Abbildung 6 Windrichtungshäufigkeitsverteilung (gemessen am MP1) für den Zeitraum 01.03.2012 bis 31.03.2012.

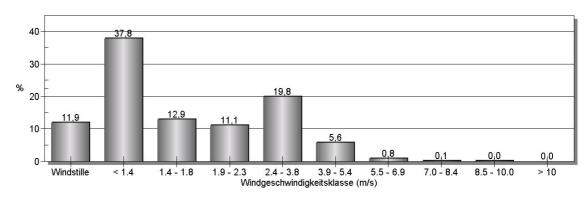


Abbildung 7 Häufigkeitsverteilung der Windgeschwindigkeiten (gemessen am MP1) für den Zeitraum 01.03.2012 bis 31.03.2012.

Die Windrosen für Januar und Februar 2012 zeigen Verteilungen, wie sie vergleichsweise typisch in den Wintermonaten auftreten. Es zeigen sich Maxima bei westsüdwestlichen und nordöstlichen Windrichtungen. Der März weist dagegen keine so ausgeprägte Windrichtungsverteilung und geringere Windgeschwindigkeiten auf.

Die Positionierung der Messpunkte MP1 und MP3 wurden so gewählt, dass sie in den Hauptwindrichtungen liegen. Dies wird durch die bislang erfasste Windrichtungsverteilung bestätigt.

Dipl.-Ing. (FH) Frank Stöcklein

A. Houlei